
doi: 10.2307/3606475
In a recent paper (1) formulae were given for the numerical integration of a function in terms of its values at a set of arguments at equal intervals. In this companion paper, formulae for numerical differentiation, using the same data, are collected. Their utility in enabling derivatives of a function given numerically at such a set of arguments to be computed is obvious, the need arises in several approximate methods which are coming more and more into use (2), (3). The formulae avoid the labour of preliminary differencing, and are indeed more convenient than the finite difference formulae when the derivative is required at all the points of subdivision of a limited range.
numerical analysis
numerical analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
