Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
American Journal of Mathematics
Article . 1931 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Projective Differential Geometry of Conjugate Nets

On the projective differential geometry of conjugate nets
Authors: Slotnick, M. M.;

On the Projective Differential Geometry of Conjugate Nets

Abstract

Es wird eine neue analytische Behandlungsweise eines (konjugierten) Kurvennetzes auf einer Fläche des dreidimensionalen projektiven Raumes angegeben, wobei auf die Symmetrie der Formeln in bezug auf die beiden Scharen von Netzkurven besonderes Gewicht gelegt wird. Neben dem gegebenen Kurvennetze wird die durch die Verbindungslinie der beiden Laplace-transformierten sowie die dazu duale durch die Schnittlinie der beiden Schmiegebenen der Netzkurven erzeugte Kongruenz in Betracht gezogen. Verschiedene daran anknüpfende (größtenteils bekannte) einfache Sätze werden in der neuen Bezeichnungsweise kurz und elegant abgeleitet. Eine neue Art von Netzen -- die \(A\)-Netze -- wird eingeführt. Diese Netze werden analytisch durch die beiden Gleichungen \(H=\mathbf{H}\), \(K =\mathbf{K}\) definiert, in denen \(H, K (\mathbf{H, K})\) die Invarianten der Laplaceschen Gleichung des Netzes in Punkt- (Ebenen-) Koordinaten bedeuten. Die \(A\)-Netze bilden somit ein Gegenstück zu den \(R\)-Netzen (\(H=\mathbf{K}\), \(K =\mathbf{H}\)) sowie zu den (vom Verf. nicht erwähnten) Jonasschen Netzen (\(H=K\), \(K =\mathbf{H}\)). Zwei verschiedene geometrische Deutungen der \(A\)-Netze werden angegeben.

Keywords

Differential geometry of webs, Projective differential geometry, differential geometry

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!