Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
American Journal of Mathematics
Article . 1931 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Semi-Metric Spaces

On semi-metric spaces
Authors: Wilson, Wallace Alvin;

On Semi-Metric Spaces

Abstract

Eine Menge \( R \) von Elementen \( a, b, \ldots \) heißt (nach Menger) ein halbmetrischer Raum, wenn je 2 Elementen \( a, b \) ein Abstand \( a b=b a \geqq 0 \) zugeordnet ist, der nur dann verschwindet, wenn \( a=b \) ist. Die Elemente \( a, b, \ldots \) heißen Punkte. Gilt für je 3 Punkte \( a, b, c \) die Dreiecksungleichung \( a c+b c \geqq a b, \) so heißt \( R \) metrisch. Der Verf. untersucht halbmetrische Räume, in denen statt der Dreiecksungleichung das schwächere Axiom gilt: \( A . \) Für jeden Punkt \( a \) und jedes \( k>0 \) existiert ein \( r>0, \) so daß, wenn \( b \) ein Punkt mit \( a b \geqq k \) und \( c \) ein beliebiger Punkt ist, die Ungleichung \( a c+b c \geqq r \) gilt. Verf. zeigt, daß ein halbmetrischer Raum \( R, \) in welchem das Axiom \( A \) gilt, mit einem metrischen Raum homöomorph ist, daß also mit anderen Worten in \( R \) eine neue, der Dreiecksungleichung genügende Metrik \( \overline{a b} \) so eingeführt werden kann, daß für einen Punkt \( a \) und eine Punktfolge \( a_{n} \) dann und nur dann \( \overline{a a}_{n} \rightarrow 0 \) gilt, wenn \( a a_{n} \rightarrow 0 \) gilt. Dieser Satz gewinnt an Interesse durch folgenden Zusammenhang: Es sei \( Z \) ein beliebiger metrischer Raum und die Zerlegung \( Z=\sum X \) in abgeschlossene, paarweise fremde Teilmengen \( X \) sei oberhalb-stetig, d. h. es gibt zu jeder Menge \( X \) und jedem \( \varepsilon>0 \) ein \( \delta>0, \) so da \( \beta \) jede Menge \( X^{\prime}, \) die von \( X \) einen Abstand \( X X^{\prime} \) ( = unt. Gr. \( \left.x x^{\prime}\right) \leqq \delta \) hat, in der \( \varepsilon \) -Umgebung von \( X \) liegt. Verf. zeigt, daß die Menge \( x \subset x, x^{\prime} \subset x \) aller \( X \) durch die Metrik \( X X^{\prime} \) zu einem halbmetrischen Raume wird, in welchem das Axiom \( A \) gilt. Hieraus und dem obigen folgt der bekannte Satz, daß die Mengen \( X \) nach Einführung einer geeigneten Metrik einen metrischen Hyperraum bilden. Verf. stellt weiterhin einige Untersuchungen über Beziehungen zwischen metrischen und topologischen Räumen an.

Keywords

topology, Semimetric spaces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    151
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
151
Top 1%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!