Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1952 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Automorphism Group of a Lie Group

The automorphism group of a Lie group
Authors: Hochschild, G.;

The Automorphism Group of a Lie Group

Abstract

Introduction. The group A (G) of all continuous and open automorphisms of a locally compact topological group G may be regarded as a topological group, the topology being defined in the usual fashion from the compact and the open subsets of G (see ?1). In general, this topological structure of A (G) is somewhat pathological. For instance, if G is the discretely topologized additive group of an infinite-dimensional vector space over an arbitrary field, then A (G) already fails to be locally compact. On the other hand, if G is a connected Lie group, we shall show without any difficulty that the compact-open topology of A (G) coincides with the topology obtained by identifying A (G) with a closed subgroup of the linear group of automorphisms of the Lie algebra of G, as was done by Chevalley (in [1]) in order to make A (G) into a Lie group. We shall then deduce that A (G) is a Lie group whenever the group of its components, G/Go, is finitely generated('), where Go denotes the component of the identity element in G. The other questions with which we shall be concerned are the following: Let I(Go) denote the group of the inner automorphisms of Go, and let E(Go, G) denote the natural image in A (Go) of A (G). Regard I(Go) and E(Go, G) as

Keywords

group theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!