
Let \(\mathfrak g\) be a complex semisimple Lie algebra, \(\mathfrak h\) a Cartan subalgebra of \(\mathfrak g\) and \(\Delta\) the set of roots of \(\mathfrak g\) with respect to \(\mathfrak h\). For any positive system \(P\) of roots we denote by \(D_P\) the set of all \(\lambda\in\mathfrak h^*\) which are integral and dominant relative to \(P\). Let \(G = K\cdot A_+\cdot N\) be the Iwasawa decomposition of the simply connected Lie group \(G\) whose Lie algebra is \(\mathfrak g\). Let \(\mathfrak H\) be the Hilbert space of \(L^2\)-functions on the compact group \(K\) with the normalized Haar measure \(dk\). For \(x\in G\) and \(k\in K\), let \[ xk = \sigma_x(k) \cdot a_+(x,k) \cdot n(x,k), \] where \(\sigma_x(k)\in K\), \(a_+(x,k)\in A_+\), \(n(x,k)\in N\). Let \(\xi\in\mathfrak h^*\). For \(x\in G\) and \(f\in \mathfrak H\), let \[ (n_\xi(x)f)(k) = \exp((\xi+2\delta)(\log a_+(x^{-1},k))) \cdot f(\sigma_x^{-1}(k)) \] for \(k\in K\), where \(2\delta = \displaystyle\sum_{\alpha\in P} \alpha\). The map \(\pi_\xi\) is a representation of \(G\) in \(\mathfrak H\). For any integral \(\nu\in\mathfrak h^*\), let \(\sigma_\nu(\exp\sqrt{-1}H) = \exp(\sqrt{-1} \nu(H))\) for \(H\in \mathfrak h_0\), \(\mathfrak h_0\) being the Lie algebra of \(A_+\). Then \(\sigma_\nu\) is a character of the group \(M = \exp\sqrt{-1}\mathfrak h_0\). For any integral \(\nu\in\mathfrak h^*\), we denote by \(\mathfrak H(\nu)\) the set of all \(f\in\mathfrak H\) such that \(R_r(m)f = \sigma_{-\nu}(m)f\) for all \(m\in M\), where \(R_r\) denotes the right regular representation of \(K\) in \(\mathfrak H\). We know that \(\mathfrak H\) is the orthogonal sum of the subspaces \(\mathfrak H(\nu)\) and each \(\mathfrak H(\nu)\) is invariant under \(\pi_\xi\). We denote by \(\pi_{\xi,\nu}\) the representation of \(G\) induced on \(\mathfrak H(\nu)\) by \(\pi_\xi\). Let \(\nu_0\) be the unique element of \(D_P\) in the orbit \(W\cdot \nu\), where \(W\) is the Weyl group of \((\mathfrak g, \mathfrak h)\) and let \(\pi_{\nu_0}\) be the irreducible representation of \(\mathfrak g\) with \(\nu_0\) as its highest weight relative to \(P\). The authors construct an irreducible infinite dimensional representation \(\pi_{\lambda,\nu}\) of \(G\) with a certain quotient space of a subspace of \(\mathfrak H(\nu)\) as its representation space by making use of \(\pi_{\xi,\nu}\) and \(\pi_{\nu_0}\), where \(\lambda\) is defined by \(\lambda = (1/2)(\xi + \nu) - \delta\). The authors study the properties of this class \(\left\{\pi_{\lambda,\nu}\right\}\) of irreducible representations of \(G\). For that purpose they consider the enveloping algebra \(\hat{\mathcal G}\) of the complexification \(\hat{\mathfrak g}\) of \(\mathfrak g\) and the centralizer \(\Omega\) in \(\hat{\mathcal G}\) of \(\mathfrak g_u\) where \(\mathfrak g_u\) is a compact form of \(\mathfrak g\) and then they construct, for each positive system \(Q\) of roots a homomorphism \(h^Q: \omega\to h^Q(\omega;\cdot,\cdot)\) of \(\Omega\) into the algebra \(P(\mathfrak h^*\times \mathfrak h^*)\) of all complex valued polynomial functions on \(\mathfrak h^*\times \mathfrak h^*\). The authors consider also the ring \(R_\nu\) of all polynomials \(h^Q(\omega;\cdot,\nu)\). Using the results and ideas about the rings \(R_\nu\) the authors study the irreducible representations of \(G\) which are of class \(O\).
Semisimple Lie groups and their representations, complex semisimple Lie algebras, Representations of Lie algebras and Lie superalgebras, algebraic theory (weights), complex semisimple Lie groups, representations, Simple, semisimple, reductive (super)algebras
Semisimple Lie groups and their representations, complex semisimple Lie algebras, Representations of Lie algebras and Lie superalgebras, algebraic theory (weights), complex semisimple Lie groups, representations, Simple, semisimple, reductive (super)algebras
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 140 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
