
doi: 10.2307/1970220
for some bounded function h on the boundary of the disc. The function h(z) determines a function h(g) on G by setting h(g) = h(g(O)). If h(z) is harmonic, it may be shown that h(g) is annihilated by a certain class of differential operators on G. The Poisson formula (1) may be used to express h(g), and we find that here it takes on a particularly simple form. Namely, if we denote by m the normalized Lebesgue measure on {j z I = 1}, and by gm, the transform of this measure by the group element g E G, then it can be seen that (1) becomes
Lie groups, semisimple Lie groups
Lie groups, semisimple Lie groups
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 277 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
