Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Annals of Mathematics
Article . 1931 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

The Fourier Transform Identity Theorem

The Fourier transform identity theorem
Authors: Berry, Andrew C.;

The Fourier Transform Identity Theorem

Abstract

It is known that a function f (x) of integrable square possesses a Fourier transform F(x) also of integrable square and that the Fourier transform of F(x) is precisely f(x). The present paper establishes this identity under more general assumptions and makes use of the Titchmarsh theory only for the derivation of a corollary to the main result. The one-dimensional case will be discussed in detail, and the method of extending the results to n dimensions indicated. 1. Throughout this paper "region" shall mean "point-set, one-dimensional or n-dimensional, measurable in the sense of Lebesgue". A function shall be said to be integrable if it is integrable in the sense of Lebesgue over all finite regions. To simplify the presentation we introduce the following notations. DEFINITION 1. An inteegrable function f (x) wtill be said to be in Le for some e such that 1 ? Q < GO if there exists, as a, finite number,

Keywords

series

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!