Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thermal Science
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator

Authors: Muflih Alhazmi; Fathi Dawalbait; Abdulrahman Aljohani; Khdija Taha; Haroon Adam; Sayed Saber;

Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator

Abstract

This paper presents a novel numerical method for analvwing chaotic systems, focusing on applications to real-world problems. The Caputo-Fabrizio operator, a fractional derivative without a singular kernel, is used to investigate chaotic behavior. A fractional-order chaotic model is analvwed using numerical solutions derived from this operator, which captures the complexity of chaotic dynamics. In this paper, the uniqueness and boundedness of the solution are established using fixed-point theory. Due to the non-linearity of the system, an appropriate numerical scheme is developed. We further explore the model?s dynamical properties through phase portraits, Lyapunov exponents, and bifurcation diagrams. These tools allow us to observe the system???s sensitivity to varying parameters and derivative orders. Ultimately, this work extends the application of fractional calculus to chaotic systems and provides a robust methodology for obtaining insights into complex behaviors.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold