Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Thermal Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thermal Science
Article . 2019 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Thermal Science
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Viscosity of hybrid nanofluids: A critical review

Authors: Hamza Babar; Muhammad Sajid; Hafiz Ali;

Viscosity of hybrid nanofluids: A critical review

Abstract

The remarkable enhancement in heat transfer capabilities of conventional fluids with the addition of nanosized metallic and non-metallic particles appealed the attention of investigators towards the suspension of hybrid nanocomposites as a substitute of mono particles. Although these fluids manifest captivating thermal characteristics, the drawbacks associated with their application include high frictional effects and pumping power requirements. The major cause of aforementioned problems is the elevated viscosity. The current study summarizes the work of different investigators and discusses the critical factors affecting the viscosity of hybrid nanofluids such as temperature, particle concentration, pH value, particle size and morphology with a concise discussion on the reasons reported in the literature for the viscosity augmentation. Furthermore, the models developed by different investigators have also been discoursed with specified limitations. Comparison between the viscosity of mono and hybrid nanofluid is also presented comprehensively. It is observed that most of the studies considered the effect of particle concentration and temperature that the effect of these factors is more significant. Water-based nanofluids delivered better results in comparison of ethylene glycol-based nanofluids while the oil-based nanofluids preferred in the applications where the pumping power is not more significant. It has been noticed that the fluids containing tube shaped nanoparticles comparatively showed enhanced viscosity than that of spherically shaped nanoparticles. It has also been observed that the studies preferred to develop their own models for the prediction of viscosity rather than to use the existing models and failed to provide a universal correlation.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    120
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
120
Top 1%
Top 10%
Top 1%
gold