
The p-spectral radius of a graph G=(V,E) with adjacency matrix A is defined as ?(p)(G) = max||x||p=1 xT Ax. This parameter shows connections with graph invariants, and has been used to generalize some extremal problems. In this work, we define the p-spectral radius of the Laplacian matrix L as ?(p)(G) = max||x||p=1 xT Lx. We show that ?(p)(G) relates to invariants such as maximum degree and size of a maximum cut. We also show properties of ?(p)(G) as a function of p, and a upper bound on maxG: |V(G)|=n ?(p)(G) in terms of n = |V| for p > 2, which is attained if n is even.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
