
doi: 10.2298/aadm0902386b
Lov?sz conjectured that every connected vertex-transitive graph has a Hamiltonian path. The odd graphs Ok form a well-studied family of connected, k-regular, vertex-transitive graphs. It was previously known that Ok has Hamiltonian paths for k ? 14. A direct computation of Hamiltonian paths in Ok is not feasible for large values of k, because Ok has (2k - 1, k - 1) vertices and k/2 (2k - 1, k - 1) edges. We show that Ok has Hamiltonian paths for 15 ? k ? 18. Instead of directly running any heuristics, we use existing results on the middle levels problem, therefore further relating these two fundamental problems, namely finding a Hamiltonian path in the odd graph and finding a Hamiltonian cycle in the corresponding middle levels graph. We show that further improved results for the middle levels problem can be used to find Hamiltonian paths in Ok for larger values of k.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
