Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22541/essoa...
Article . 2024 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Geophysical Research Planets
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Research.fi
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ter-diurnal Atmospheric Tide on Mars

Authors: Joonas Leino; Ari‐Matti Harri; Robert John Wilson; Don Banfield; Mark Lemmon; Mark Paton; Jose‐Antonio Rodriguez‐Manfredi; +1 Authors

Ter-diurnal Atmospheric Tide on Mars

Abstract

Cyclic absorption of solar radiation generates oscillations in atmospheric fields. These oscillations are called atmospheric or thermal tides, which are furthermore modified by topography and surface properties. This leads to a complex mix of sun-synchronous and non sun-synchronous tides that propagate around the planet eastward and westward. This study focuses on analyzing the ter-diurnal component (period of 8 hr) from surface pressure observations by Mars Science Laboratory (MSL), InSight, Viking Lander (VL) 1, and VL2. General Circulation Model (GCM) results are used to provide a global context for interpreting the observed ter-diurnal tide properties. MSL and InSight have a clear and similar seasonal cycle, with local amplitude peaks at around solar longitude (Ls) 60◦ , Ls 130◦ and Ls 320◦ . The amplitude peak at Ls 320◦ is related to the annual dust storm, while the dust storm around Ls 230◦ is not detected by either platforms. During the global dust storms, MSL, VL1, and VL2 detect their highest amplitudes. GCM predicts the weakest amplitudes at the equinoxes, while the strongest ones are predicted in summertime for both hemispheres. GCM amplitudes are typically lower than observed, but match better during the aphelion season. During this time, model results suggest that the two most prominent modes are the sun-synchronous ter-diurnal tide (TW3) and an eastward propagating resonantly-enhanced Kelvin wave (TE3). Simulations with and without the effect of radiative heating by water ice clouds indicate the clouds may play a significant role in forcing the ter-diurnal tide during northern hemisphere summer season.

Keywords

Thermal tides, Atmospheric tides, Mars, Ter-diurnal tide, Pressure observations, Martian atmosphere, Avaruustieteet ja tähtitiede

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid