Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22489/cinc....
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hidden Markov Model Approach for Ventricular Fibrillation Detection

Authors: Borja Altamira; Erik Alonso; Unai Irusta; Elisabete Aramendi; Mohamud Daya;

A Hidden Markov Model Approach for Ventricular Fibrillation Detection

Abstract

Early detection and defibrillation of ventricular fibrillation (VF) has been associated with improved survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AEDs). This study proposes a method for VF detection using ECGs obtained from OHCA patients. The dataset of the study contained 596 10-s ECG segments, 144 shockable and 452 non-shockable, from 169 OHCA patients. The dataset was split patient-wise into training (60%) and test (40%) sets. Each ECG segment was band-pass filtered (1–30 Hz), waveform features were computed and fed as observations to a Hidden Markov Model (HMM) that assigned each observation to one of the two hidden states, shockable or non-shockable. The number of possible observations was reduced using k-means clustering. The optimization of the method consisted of feature selection and optimization of the number of clusters through a forward greedy wrapping approach using patient-wise 10-fold cross validation in the training set. The performance of the method was computed in terms of sensitivity (SE) and specificity (SP) using the test set. This procedure was repeated 500 times to estimate the distributions of the performance metrics. The method showed a mean (SD) SE and SP of 94.4% (3.8) and 97.8% (1.2), respectively. The method is compliant with the American Heart Association requirements.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze