
We argue that the quantum-theoretical structures studied in several recent lines of research cannot be adequately described within the standard framework of quantum circuits. This is in particular the case whenever the combination of subsystems is described by a nontrivial blend of direct sums and tensor products of Hilbert spaces. We therefore propose an extension to the framework of quantum circuits, given by routed linear maps and routed quantum circuits. We prove that this new framework allows for a consistent and intuitive diagrammatic representation in terms of circuit diagrams, applicable to both pure and mixed quantum theory, and exemplify its use in several situations, including the superposition of quantum channels and the causal decompositions of unitaries. We show that our framework encompasses the `extended circuit diagrams' of Lorenz and Barrett [arXiv:2001.07774 (2020)], which we derive as a special case, endowing them with a sound semantics.
Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph), [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
Quantum Physics, Physics, QC1-999, FOS: Physical sciences, Quantum Physics (quant-ph), [PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
