
The proper treatment of hadronic resonances plays an important role for many aspects of heavy ion collisions. We expect this to be the case also for hadronization, due to the large degeneracies of excited states, and the abundant production of hadrons from their decays. We show how a comprehensive treatment of excited meson states can be incorporated into quark recombination, and in extension, into Hybrid Hadronization. We discuss in detail the quantum mechanics of forming excited states, utilizing the Wigner distribution functions of angular momentum eigenstates of isotropic 3-D harmonic oscillators. We describe how resonance decays can be handled, based on a set of minimal assumptions, by creating an extension of hadron decays in PYTHIA 8. Finally, we present a study of hadron production by jets using PYTHIA and Hybrid Hadronization with excited mesons up to orbital angular momentumL= 4. We find that states up toL= 2 are produced profusely by quark recombination.
Nuclear Theory (nucl-th), Nuclear Theory, Physics, QC1-999, FOS: Physical sciences, Nuclear Experiment (nucl-ex), info:eu-repo/classification/ddc/530, Nuclear Experiment, 530
Nuclear Theory (nucl-th), Nuclear Theory, Physics, QC1-999, FOS: Physical sciences, Nuclear Experiment (nucl-ex), info:eu-repo/classification/ddc/530, Nuclear Experiment, 530
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
