
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>In these proceedings, we review recent advances in applying quantum computing to lattice field theory. Quantum computing offers the prospect to simulate lattice field theories in parameter regimes that are largely inaccessible with the conventional Monte Carlo approach, such as the sign-problem afflicted regimes of finite baryon density, topological terms, and out-of-equilibrium dynamics. First proof-of-concept quantum computations of lattice gauge theories in (1+1) dimensions have been accomplished, and first resource-efficient quantum algorithms for lattice gauge theories in (1+1) and (2+1) dimensions have been developed. The path towards quantum computations of (3+1)-dimensional lattice gauge theories, including Lattice QCD, requires many incremental steps of improving both quantum hardware and quantum algorithms. After reviewing these requirements and recent advances, we discuss the main challenges and future directions.
25 pages, 9 figures; Proceedings of the 39th International Symposium on Lattice Field Theory, 8th-13th August 2022, Rheinische Friedrich-Wilhelms-Universit\"at Bonn, Germany
Quantum Physics, High Energy Physics - Lattice (hep-lat), baryon: density, lattice field theory, FOS: Physical sciences, 530, computer: quantum, topological, High Energy Physics - Lattice, quantum algorithm, baryon, density, hardware, info:eu-repo/classification/ddc/530, numerical calculations, Quantum Physics (quant-ph), computer, quantum, Monte Carlo, lattice
Quantum Physics, High Energy Physics - Lattice (hep-lat), baryon: density, lattice field theory, FOS: Physical sciences, 530, computer: quantum, topological, High Energy Physics - Lattice, quantum algorithm, baryon, density, hardware, info:eu-repo/classification/ddc/530, numerical calculations, Quantum Physics (quant-ph), computer, quantum, Monte Carlo, lattice
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% | 
