<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
While the axion was originally introduced to wash out CP violation from strong interactions, new sources of CP violation beyond QCD might manifest themselves via a tiny scalar axion-nucleon component. The latter can be experimentally probed in axion-mediated force experiments, as suggested long ago by J.E. Moody and F. Wilczek. In the present note, I review the physical origin of CP-violating axion couplings and point out the special role of the QCD axion as a low-energy portal to high-energy sources of CP violation.
10 pages, 1 figure. Longer version of article to appear in EPS-HEP2021 proceedings
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |