
arXiv: 2004.00142
We review the gauge hierarchy problem in the standard model. We discuss the meaning of the quadratic divergence in terms of the Wilsonian renormalization group. Classical scale symmetry, which prohibits dimensionful parameters in the bare action, could play a key role for the understanding of the origin of the electroweak scale. We discuss the scale-generation mechanism, i.e. scalegenesis in scale invariant theories. In this paper, we introduce a scale invariant extension of the SM based on a strongly interacting scalar-gauge theory. It is discussed that asymptotically safe quantum gravity provides a hint about solutions to the gauge hierarchy problem.
26 pages, 4 figures, contribution to Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity", 31 Aug - 25 Sep 2019, Corfu, Greece
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
