Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://pos.sissa.it...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://pos.sissa.it/261/011/p...
Article
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.22323/1.261...
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Chemical Evolution of Galaxies

Authors: H. Jabran Zahid;

The Chemical Evolution of Galaxies

Abstract

The gas-phase oxygen abundance, i.e. metallicity, of a galaxy is set by the interplay between star formation and gas flows. Metals are dispersed into the interstellar medium by stellar winds and supernovae. Metals accumulate in the interstellar medium of star-forming galaxies and provide a record of star-formation. However, inflows of unenriched gas into galaxies and metal-rich outflows of gas from galaxies can both reduce the metallicity. Thus, measurements of the metallicity across cosmic time provide important constraints for understanding the cycling of gas through galaxies as they build their stellar mass and evolve. We have measured the chemical evolution of galaxies over the last 10 billion years of cosmic time. These measurements provide a coherent picture of how galaxies enrich as they build their stellar mass. We show that the chemical evolution of star-forming galaxies is very simple. The metallicity of star-forming galaxies at z < 1.5 only depends on the stellar-to-gas mass ratio. The relation between metallicity and stellar-to-gas mass ratio is an universal relation followed by all galaxies as they evolve.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid