Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://pos.sissa.it...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://pos.sissa.it/161/018/p...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.22323/1.161...
Article . 2013 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2012
License: CC BY NC SA
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Observational aspects of an inhomogeneous cosmology

Authors: Saulder, Christoph; Mieske, Steffen; W. Zeilinger, Werner;

Observational aspects of an inhomogeneous cosmology

Abstract

One of the biggest mysteries in cosmology is Dark Energy, which is required to explain the accelerated expansion of the universe within the standard model. But maybe one can explain the observations without introducing new physics, by simply taking one step back and re-examining one of the basic concepts of cosmology, homogeneity. In standard cosmology, it is assumed that the universe is homogeneous, but this is not true at small scales (<200 Mpc). Since general relativity, which is the basis of modern cosmology, is a non-linear theory, one can expect some backreactions in the case of an inhomogeneous matter distribution. Estimates of the magnitude of these backreactions (feedback) range from insignificant to being perfectly able to explain the accelerated expansion of the universe. In the end, the only way to be sure is to test predictions of inhomogeneous cosmological theories, such as timescape cosmology, against observational data. If these theories provide a valid description of the universe, one expects aside other effects, that there is a dependence of the Hubble parameter on the line of sight matter distribution. The redshift of a galaxy, which is located at a certain distance, is expected to be smaller if the environment in the line of sight is mainly high density (clusters), rather than mainly low density environment (voids). Here we present a test for this prediction using redshifts and fundamental plane distances of elliptical galaxies obtained from SDSS DR8 data. In order to get solid statistics, which can handle the uncertainties in the distance estimate and the natural scatter due to peculiar motions, one has to systematically study a very large number of galaxies. Therefore, the SDSS forms a perfect basis for testing timescape cosmology and similar theories. The preliminary results of this cosmological test are shown in this contribution.

8 pages, 5 figures, PoS conference proceedings: VIII International Workshop on the Dark Side of the Universe, June 2012, Buzios, Brasil

Keywords

103003 Astronomy, Cosmology and Nongalactic Astrophysics (astro-ph.CO), 103003 Astronomie, astro-ph.CO, FOS: Physical sciences, 103004 Astrophysics, 103004 Astrophysik, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid