
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10261/20560
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in close binary systems. The characteristics of the white dwarf (mass, chemical composition, luminosity), the accreted material (chemical composition) and those related with the properties of the binary system (mass accretion rate), are crucial for the further evolution towards the explosion. An analysis of the outcome of accretion and the implications for the growth of the white dwarf towards the Chandrasekhar mass and its thermonuclear explosion is presented.
10 pages, "Supernovae: lights in the darkness", October 3-5, 2007, Mao (Menorca), to appear in Proceedings of Science
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 31 | |
downloads | 29 |