
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Why are "analogue spacetimes'' interesting? For the purposes of this workshop the answer is simple: Analogue spacetimes provide one with physically well-defined and physically well-understood concrete models of many of the phenomena that seem to be part of the yet incomplete theory of "quantum gravity'', or more accessibly, "quantum gravity phenomenology''. Indeed "analogue spacetimes'' provide one with concrete models of "emergence'' (whereby the effective low-energy theory can be radically different from the high-energy microphysics). They also provide many concrete and controlled models of "Lorentz symmetry breaking'', and extensions of the usual notions of pseudo-Riemannian geometry such as "rainbow spacetimes'', and pseudo-Finsler geometries, and more. I will provide an overview of the key items of "unusual physics'' that arise in analogue spacetimes, and argue that they provide us with hints of what we should be looking for in any putative theory of "quantum gravity''. For example: The dispersion relations that naturally arise in the known emergent/analogue spacetimes typically violate analogue Lorentz invariance at high energy, but do not do so in completely arbitrary manner. This suggests that a search for arbitrary violations of Lorentz invariance is possibly overkill: There are a number of natural and physically well-motivated restrictions one can put on emergent/ analogue dispersion relations, considerably reducing the plausible parameter space.
24 pages; Based on a talk at the conference: From Quantum to Emergent Gravity: Theory and Phenomenology, June 11-15 2007, Trieste, Italy
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.  | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).  | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.  | Top 10% | 
