
doi: 10.2222/jsv.60.209
pmid: 21488334
Human cytomegalovirus (HCMV) is a ubiquitous beta human herpesvirus type 5. Compared to other human herpesviruses, HCMV is the largest, with a genome of approximately 235 kb containing approximately 250 ORFs with the potential to encode proteins. Usually, HCMV asymptomatically infects the host during childhood, and establishes life-long latency. The infection is life-threatening for infants and immunocompromised individuals, because of direct cytopathicity by viral replication, causing systemic organ injuries. Intrauterine infection occasionally causes microcephaly, sensorineural hearing loss and mental retardation. HCMV genome contains a number of accessory genes. Most of them are engaged in immune evasion or inhibition of cell death, possibly, resulting in a symbiosis between virus and host. CD34-positive myeloid progenitor cells are considered as a site of latency. However, the molecular mechanisms by which HCMV establishes and maintains latency and reactivates remain poorly understood. Recently in Japan, the decline of maternal HCMV seropositivity may increase the risk of intrauterine infection. It needs to immediately establish the protection against transplacental HCMV infection, such as a new type of neutralizing antibody or vaccine, which effectively interferes viral entry specific to endothelial and epithelial cells. Furthermore, HCMV infection might be considered as the most important factor for driving immune senescence in the elderly.
Aging, Immunity, Cellular, Transcription, Genetic, Virion, Cytomegalovirus, Infant, Genome, Viral, Adaptive Immunity, Immunity, Innate, Infectious Disease Transmission, Vertical, Virus Latency, Mice, Pregnancy, Cytomegalovirus Infections, Animals, Humans, Female, Virus Activation, Child, Immune Evasion
Aging, Immunity, Cellular, Transcription, Genetic, Virion, Cytomegalovirus, Infant, Genome, Viral, Adaptive Immunity, Immunity, Innate, Infectious Disease Transmission, Vertical, Virus Latency, Mice, Pregnancy, Cytomegalovirus Infections, Animals, Humans, Female, Virus Activation, Child, Immune Evasion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
