Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Uirusuarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Uirusu
Article . 2007 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Uirusu
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Uirusu
Article . 2008
versions View all 2 versions
addClaim

Gene therapy using AAV

Authors: Keiya, Ozawa;

Gene therapy using AAV

Abstract

AAV (adeno-associated virus) vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells. Among various neurological disorders, Parkinson's disease (PD) is one of the most promising candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. One of the major approaches to gene therapy of PD is the intrastriatal expression of dopamine (DA)-synthesizing enzyme genes. As for the initial step of clinical application, AAV vector-mediated AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by adjusting the dose of L-DOPA. Second, intramuscular injection of AAV vectors is appropriate to protein-supplement gene therapy. Monogenic diseases such as hemophilia and Fabry disease are suitable candidates. Regarding cancer gene therapy, AAV vectors may be utilized to inhibit tumor angiogenesis, metastasis, and invasion. When long-term transgene expression in stem cells is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of AAV would be particularly valuable.

Related Organizations
Keywords

Genetic Vectors, Parkinson Disease, Genetic Therapy, Dependovirus, Hemophilia A, Levodopa, Aromatic-L-Amino-Acid Decarboxylases, Neoplasms, Animals, Fabry Disease, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold