
doi: 10.2217/fmb.11.144
pmid: 22191450
Salmonella enterica is an invasive, facultative intracellular gastrointestinal pathogen causing human diseases such as gastroenteritis and typhoid fever. Virulence-attenuated strains of this pathogen have interesting capacities for the generation of live vaccines. Attenuated live typhoidal and nontyphoidal Salmonella strains can be used for vaccination against Salmonella infections and to target tumor tissue. Such strains may also serve as live carriers for the development of vaccination strategies against other bacterial, viral or parasitic pathogens. Various strategies have been developed to deploy regulatory circuits and protein secretion systems for efficient expression and delivery of foreign antigens by Salmonella carrier strains. One prominent example is the use of type III secretion systems to translocate recombinant antigens into antigen presenting cells. In this review, we will describe the recent developments in strategies that utilize live attenuated Salmonella as vaccine carriers for prophylactic vaccination against infectious diseases and therapeutic vaccination against tumors. Considerations for generating safe, attenuated carrier strains, designing stable expression systems and the use of adjuvants for live carrier strategies are discussed.
Drug Carriers, Vaccines, Drug Delivery Systems, Animals, Gene Expression, Humans, Salmonella enterica, Antigens, Communicable Diseases
Drug Carriers, Vaccines, Drug Delivery Systems, Animals, Gene Expression, Humans, Salmonella enterica, Antigens, Communicable Diseases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
