
doi: 10.2217/bmm.14.97
pmid: 25605455
Thiopurines are the cornerstone of treatment for a wide variety of medical disorders, ranging from pediatric leukemia to inflammatory bowel disease. Because of their complex metabolism and potential toxicities, the use of biomarkers to predict risk and response is paramount. Thiopurine S-methyltransferase and thiopurine metabolite levels have emerged as companion diagnostics with crucial roles in facilitating safe and effective treatment. This review serves to update the reader on how these tools are being developed and implemented in clinical practice. A useful paradigm in thiopurine therapeutic strategy is presented, along with fresh insights into the mechanisms underlying these approaches. We elaborate on potential future developments in the optimization of thiopurine therapy.
Leukemia, Mercaptopurine, Allopurinol, Humans, Drug Therapy, Combination, Methyltransferases, Inflammatory Bowel Diseases, Biomarkers, Immunosuppressive Agents
Leukemia, Mercaptopurine, Allopurinol, Humans, Drug Therapy, Combination, Methyltransferases, Inflammatory Bowel Diseases, Biomarkers, Immunosuppressive Agents
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
