
Many improvements to programming have come from shortening feedback loops, for example with Integrated Development Environments, Unit Testing, Live Programming, and Distributed Version Control. A barrier to feedback that deserves greater attention is Schema Evolution. When requirements on the shape of data change then existing data must be migrated into the new shape, and existing code must be modified to suit. Currently these adaptations are often performed manually, or with ad hoc scripts. Manual schema evolution not only delays feedback but since it occurs outside the purview of version control tools it also interrupts collaboration. Schema evolution has long been studied in databases. We observe that the problem also occurs in non-database contexts that have been less studied. We present a suite of challenge problems exemplifying this range of contexts, including traditional database programming as well as live front-end programming, model-driven development, and collaboration in computational documents. We systematize these various contexts by defining a set of layers and dimensions of schema evolution. We offer these challenge problems to ground future research on the general problem of schema evolution in interactive programming systems and to serve as a basis for evaluating the results of that research. We hope that better support for schema evolution will make programming more live and collaboration more fluid.
arXiv admin note: text overlap with arXiv:2309.11406
FOS: Computer and information sciences, Computer Science - Programming Languages, Local-first Software, Version Control, Type Evolution, Schema Evolution, Image-based Programming, Live Programming, Hot Reloading, Programming Languages (cs.PL)
FOS: Computer and information sciences, Computer Science - Programming Languages, Local-first Software, Version Control, Type Evolution, Schema Evolution, Image-based Programming, Live Programming, Hot Reloading, Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
