
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) \to \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independent Roman dominating function (OIRDF) on $G$ if the set $\{v\in V\mid f(v)=0\}$ is independent. The (outer-independent) Roman domination number $\gamma_{R}(G)$ ($\gamma_{oiR}(G)$) is the minimum weight of an RDF (OIRDF) on $G$. Clearly for any graph $G$, $\gamma_{R}(G)\le \gamma_{oiR}(G)$. In this paper, we provide a constructive characterization of trees $T$ with $\gamma_{R}(T)=\gamma_{oiR}(T)$.
Roman domination, QA1-939, outer-independent Roman domination, Mathematics, tree
Roman domination, QA1-939, outer-independent Roman domination, Mathematics, tree
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
