
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.22028/d291-27052
Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst.
The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.
ddc:004, ddc:510, Variationsrechnung, decolourisation, variational, Optischer Fluss, high dynamic range, image fusion, iterative schemes, 004, 510, Bildfusion, Numerisches Verfahren, depth from focus, multispectral imaging, optic flow, Bildverarbeitung, Bildregistrierung, exposure fusion, second order regularisation
ddc:004, ddc:510, Variationsrechnung, decolourisation, variational, Optischer Fluss, high dynamic range, image fusion, iterative schemes, 004, 510, Bildfusion, Numerisches Verfahren, depth from focus, multispectral imaging, optic flow, Bildverarbeitung, Bildregistrierung, exposure fusion, second order regularisation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average | 
