Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific documents...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.22028/d2...
Doctoral thesis . 2009
Data sources: Datacite
MPG.PuRe
Doctoral thesis . 2009
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analyses of evolutionary algorithms

Authors: Happ, Edda;

Analyses of evolutionary algorithms

Abstract

Evolutionary algorithms (EAs) are a highly successful tool commonly used in practice to solve algorithmic problems. This remarkable practical value, however, is not backed up by a deep theoretical understanding. Such an understanding would facilitate the application of EAs to further problems. Runtime analyses of EAs are one way to expand the theoretical knowledge in this field. This thesis presents runtime analyses for three prominent problems in combinatorial optimization. Additionally, it provides probability theoretical tools that will simplify future runtime analyses of EAs. The first problem considered is the Single Source Shortest Path problem. The task is to find in a weighted graph for a given source vertex shortest paths to all other vertices. Developing a new analysis method we can give tight bounds on the runtime of a previously designed and analyzed EA for this problem. The second problem is the All-Pairs Shortest Path problem. Given a weighted graph, one has to find a shortest path for every pair of vertices in the graph. For this problem we show that adding a crossover operator to a natural EA using only mutation provably decreases the runtime. This is the first time that the usefulness of a crossover operator was shown for a combinatorial problem. The third problem considered is the Sorting problem. For this problem, we design a new representation based on trees. We show that the EA nat- urally arising from this representation has a better runtime than previously analyzed EAs.

Evolutionäre Algorithmen (EAs) werden in der Praxis sehr erfolgreich eingesetzt. Bisher werden die theoretischen Grundlagen von EAs jedoch nicht zufriedenstellend verstanden. Laufzeitanalysen für einfache EAs sollen dieses Verständnis erweitern. Diese Dissertation enthält Laufzeitanalysen für EAs für drei wohlbekannte kombinatorische Probleme. Zusätzlich werden wahrscheinlichkeitstheoretische Hilfsmittel zur Analyse von EAs eingeführt. Zuerst behandeln wir das Single Source Shortest Path Problem. Die Aufgabe besteht darin, in einem gewichteten Graphen einen kürzesten Weg von einem Startknoten zu jedem anderen Knoten zu finden. Durch die Entwick- lung einer neuen Analysemethode konnten wir scharfe Schranken für die Laufzeit eines bereits zuvor präsentierten und analysierten EAs angeben. Als nächstes betrachten wir das All-Pairs Shortest Path Problem. Hierbei will man für jedes Paar von Knoten in einem gewichteten Graphen einen kürzesten Weg berechnen. Für dieses Problem zeigen wir, dass das Hinzufügen eines Crossover Operators die Laufzeit gegenüber einem natürlichen EA, der nur Mutationen nutzt, verbessert. Dies ist das erste Mal, dass für ein kombinatorisches Problem bewiesen wurde, dass ein Crossover Operator die Laufzeit reduziert. Für das Sortierproblem entwickeln wir eine neue, auf Bäumen beruhende Repräsentation und zeigen, dass der natürlich daraus entstehende EA eine bessere Laufzeit hat als vorherige EAs.

Country
Germany
Related Organizations
Keywords

ddc:004, sorting problem, Laufzeit, Single Source Shortest Path Problem, evolutionary algorithm, Sortierverfahren, runtime analyses, Sortierproblem, Crossover Operator, Laufzeitanalyse, All-Pairs Shortest Path Problem, Evolutionärer Algorithmus, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green