Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SEIBUTSU BUTSURI KAG...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SEIBUTSU BUTSURI KAGAKU
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

SMart Amplification Process (SMAP).

新規遺伝子技術SMAP法
Authors: Yasumasa Mitani;

SMart Amplification Process (SMAP).

Abstract

We developed a simple and rapid single nucleotide polymorphism (SNP) detection system named SMart Amplification Process (SMAP). SMAP is an isothermal nucleic acid amplification method, which uses novel Aac DNA Polymerase isolated from Alicyclobacillus acidocaldarius. Aac DNA Polymerase is in particular suitable isothermal amplification processes having a strand displacement activity. Moreover, SMAP employs an asymmetrical primer design and uses Thermus aquaticus MutS (Taq MutS). Taq MutS is a mismatch binding protein providing a highly effective approach to achieving complete suppression of background amplification derived from mis-amplified DNA. Therefore DNA amplification only occurs with a perfect primer match, and amplification alone is sufficient to identify the target allele. These features of SMAP enable us to perform rapid and precise SNP detection assays. SMAP has immense potential for the development of medical diagnostic products, as for example, to rapidly detect EGFR or K-ras gene mutations at high accuracy. The development of molecular diagnostics along with an increasing knowledge about genomic information has caused a paradigm shift away from the standard protocol of medical care towards pharmacogenomics. This new field of medical science is based on the growing knowledge about genetic alterations and their relationship to specific phenotypes, such as disease predisposition, drug metabolism, and disease development. Due to its ability for high-throughput gene analysis and SNP detection, SMAP is certain to have significant impact in this field.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze