Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Medical I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Medical Internet Research
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2196/prepri...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Population-Wide Depression Incidence Forecasting Comparing Autoregressive Integrated Moving Average and Vector Autoregressive Integrated Moving Average to Temporal Fusion Transformers: Longitudinal Observational Study

Authors: Deliang Yang; Yiyi Tang; Vivien Kin Yi Chan; Qiwen Fang; Sandra Sau Man Chan; Hao Luo; Ian Chi Kei Wong; +8 Authors

Population-Wide Depression Incidence Forecasting Comparing Autoregressive Integrated Moving Average and Vector Autoregressive Integrated Moving Average to Temporal Fusion Transformers: Longitudinal Observational Study

Abstract

Background Accurate prediction of population-wide depression incidence is vital for effective public mental health management. However, this incidence is often influenced by socioeconomic factors, such as abrupt events or changes, including pandemics, economic crises, and social unrest, creating complex structural break scenarios in the time-series data. These structural breaks can affect the performance of forecasting methods in various ways. Therefore, understanding and comparing different models across these scenarios is essential. Objective This study aimed to develop depression incidence forecasting models and compare the performance of autoregressive integrated moving average (ARIMA) and vector-ARIMA (VARIMA) and temporal fusion transformers (TFT) under different structural break scenarios. Methods We developed population-wide depression incidence forecasting models and compared the performance of ARIMA and VARIMA-based methods to TFT-based methods. Using monthly depression incidence from 2002 to 2022 in Hong Kong, we applied sliding windows to segment the whole time series into 72 ten-year subsamples. The forecasting models were trained, validated, and tested on each subsample. Within each 10-year subset, the first 7 years were used for training, with the eighth year for setting hold-out validation, and the ninth and tenth years for testing. The accuracy of the testing set within each 10-year subsample was measured by symmetric mean absolute percentage error (SMAPE). Results We found that in subsamples without significant slope or trend change (structural break), multivariate TFT significantly outperformed univariate TFT, vector-ARIMA (VARIMA), and ARIMA, with an average SMAPE of 11.6% compared to 13.2% (P=.01) for univariate TFT, 16.4% (P=.002) for VARIMA, and 14.8% (P=.003) for ARIMA. Adjusting for the unemployment rate improved TFT performance more effectively than VARIMA. When fluctuating outbreaks happened, TFT was more robust to sharp interruptions, whereas VARIMA and ARIMA performed better when incidence surged and remained high. Conclusions This study provides a comparative evaluation of TFT and ARIMA and VARIMA models for forecasting depression incidence under various structural break scenarios, offering insights into predicting disease burden during both stable and unstable periods. The findings support a decision-making framework for model selection based on the nature of disruptions and data characteristics. For public health policymaking, the results suggest that TFT may be a more suitable tool for disease burden forecasting during periods of stable burden level or when sudden temporary interruption, such as pandemics or socioeconomic variation, impacts disease occurrence.

Country
United Kingdom
Keywords

Original Paper, Models, Statistical, Depression, Incidence, Computer applications to medicine. Medical informatics, R858-859.7, deep learning, ARIMA, vector-ARIMA, electronic health records, machine learning, structural break scenarios, depression incidence forecasting, temporal fusion transformers, medical informatics, Humans, Hong Kong, population-wide depression incidence, Longitudinal Studies, Public aspects of medicine, RA1-1270, Forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold