Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JMIR Public Health a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JMIR Public Health and Surveillance
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JMIR Public Health and Surveillance
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Purdue E-Scholar
Other literature type . 2020
Data sources: Purdue E-Scholar
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complementing the US Food and Drug Administration Adverse Event Reporting System With Adverse Drug Reaction Reporting From Social Media: Comparative Analysis

Authors: Zeyun Zhou; Kyle Emerson Hultgren;

Complementing the US Food and Drug Administration Adverse Event Reporting System With Adverse Drug Reaction Reporting From Social Media: Comparative Analysis

Abstract

Background Adverse drug reactions (ADRs) can occur any time someone uses a medication. ADRs are systematically tracked and cataloged, with varying degrees of success, in order to better understand their etiology and develop methods of prevention. The US Food and Drug Administration (FDA) has developed the FDA Adverse Event Reporting System (FAERS) for this purpose. FAERS collects information from myriad sources, but the primary reporters have traditionally been medical professionals and pharmacovigilance data from manufacturers. Recent studies suggest that information shared publicly on social media platforms related to medication use could be of benefit in complementing FAERS data in order to have a richer picture of how medications are actually being used and the experiences people are having across large populations. Objective The aim of this study is to validate the accuracy and precision of social media methodology and conduct evaluations of Twitter ADR reporting for commonly used pharmaceutical agents. Methods ADR data from the 10 most prescribed medications according to pharmacy claims data were collected from both FAERS and Twitter. In order to obtain data from FAERS, the SafeRx database, a curated collection of FAERS data, was used to collect data from March 1, 2016, to March 31, 2017. Twitter data were manually scraped during the same time period to extract similar data using an algorithm designed to minimize noise and false signals in social media data. Results A total of 40,539 FAERS ADR reports were obtained via SafeRx and more than 40,000 tweets containing the drug names were obtained from Twitter’s Advanced Search engine. While the FAERS data were specific to ADRs, the Twitter data were more limited. Only hydrocodone/acetaminophen, prednisone, amoxicillin, gabapentin, and metformin had a sufficient volume of ADR content for review and comparison. For metformin, diarrhea was the side effect that resulted in no difference between the two platforms (P=.30). For hydrocodone/acetaminophen, ineffectiveness as an ADR that resulted in no difference (P=.60). For gabapentin, there were no differences in terms of the ADRs ineffectiveness and fatigue (P=.15 and P=.67, respectively). For amoxicillin, hypersensitivity, nausea, and rash shared similar profiles between platforms (P=.35, P=.05, and P=.31, respectively). Conclusions FAERS and Twitter shared similarities in types of data reported and a few unique items to each data set as well. The use of Twitter as an ADR pharmacovigilance platform should continue to be studied as a unique and complementary source of information rather than a validation tool of existing ADR databases.

Country
United States
Keywords

adverse drug reactions, Original Paper, Drug-Related Side Effects and Adverse Reactions, United States Food and Drug Administration, FAERS, 610, Pharmacy and Pharmaceutical Sciences, United States, 615, pharmacovigilance, social media reporting, Adverse Drug Reaction Reporting Systems, Data Mining, Humans, Public aspects of medicine, RA1-1270, Social Media

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%
Green
gold