<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 11931570
DNA microarrays are a powerful tool to investigate differential gene expression for thousands of genes simultaneously. Although DNA microarrays have been widely used to understand the critical events underlying growth, development, homeostasis, behavior and the onset of disease, the management of the resulting data has received little attention. Presently, the fluorescent dyes Cy3 and Cy5 are most often used to prepare labeled cDNA for microarray hybridizations. Raw microarray data are image files that have to be transformed into gene expression formats--a process that requires data manipulation due to systematic variations which may be attributed to differences in the physical and chemical dye applications is to identify differences in transcript levels calculated from fluorescence ratios it is necessary to normalize fluorescence signals to compensate for systematic variations. Here, we will review current normalization strategies applied to cDNA microarrays and discuss their limits. We will show that experimental design determines normalization success.
Normalizing DNA Microarray Data, DNA, Complementary, Animals, Humans, Carbocyanines, Fluorescent Dyes, Oligonucleotide Array Sequence Analysis
Normalizing DNA Microarray Data, DNA, Complementary, Animals, Humans, Carbocyanines, Fluorescent Dyes, Oligonucleotide Array Sequence Analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 75 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |