
pmid: 33648286
The reactivity of malondialdehyde in saturated glycerol triheptanoate oil was studied over a wide temperature range (298.15-453.15 K). With respect to the non-ideal character of a lipid medium, a kinetic model was proposed that described the experimental malondialdehyde data by a reversible hydrolytic cleavage and an irreversible aldol self-condensation reaction. Significant parameter estimates were obtained by using a global one-step non-linear regression procedure. The aldol self-condensation of malondialdehyde showed to be the main degradation route of malondialdehyde in oils. Simulation of the malondialdehyde formation during lipid oxidation of sunflower oil demonstrated that, depending on the heating time, the experimentally obtained malondialdehyde concentrations can substantially underestimate the ongoing lipid oxidation.
Kinetics, Malondialdehyde, Plant Oils, Sunflower Oil, Oxidation-Reduction
Kinetics, Malondialdehyde, Plant Oils, Sunflower Oil, Oxidation-Reduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
