Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Aging Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Aging Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
Current Aging Science
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyphenols and Aging

Authors: Trygve O. Tollefsbol; Brannon L Queen;

Polyphenols and Aging

Abstract

Age-associated changes within an individual are inherently complex and occur at multiple levels of organismal function. The overall decline in function of various tissues is known to play a key role in both aging and the complex etiology of certain age-associated diseases such as Alzheimer's disease (AD) and cancer. Continuing research highlights the dynamic capacity of polyphenols to protect against age-associated disorders through a variety of important mechanisms. Numerous lines of evidence suggest that dietary polyphenols such as resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin have the capacity to mitigate age-associated cellular damage induced via metabolic production of reactive oxygen species (ROS). However, recently acquired evidence also demonstrates a likely role for these polyphenols as anticancer agents capable of preventing formation of new vasculature in neoplastic tissues. Polyphenols have also been shown to possess other anticancer properties such as specific cell-signaling actions that may stimulate the activity of the regulatory protein SIRT1. Additionally, polyphenolic compounds have demonstrated their inhibitory effects against chronic vascular inflammation associated with atherosclerosis. These increasingly well-documented results have begun to provide a basis for considering the use of polyphenols in the development of novel therapies for certain human diseases. And while the mechanisms by which these effects occur are yet to be fully understood, it is evident that further investigation may yield a potential use for polyphenols as pharmacological interventions against specific age-associated diseases.

Related Organizations
Keywords

Flavonoids, Aging, Neovascularization, Pathologic, Polyphenols, Cardiovascular Physiological Phenomena, Phenols, Alzheimer Disease, Risk Factors, Neoplasms, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    163
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
163
Top 1%
Top 10%
Top 1%
bronze