<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19941449
Periodontal disease leads to destruction of the periodontium such as alveolar bone, cementum, the periodontal ligament, and gingiva. Effective treatment for periodontal tissue regeneration is important, because periodontal disease is related to several systemic diseases. However, various conventional therapies for periodontal tissue regeneration have shown limited and variable clinical outcomes. Thus, there are ongoing efforts to identify an alternative cell source, such as stem cells, for the development of new tissue engineering therapies. In this review, periodontal disease and the application of tissue engineering for periodontal tissue regeneration are discussed. In particular, adipose-derived stem cells are presented as an agent for restoring periodontal tissue defects.
Adipose Tissue, Tissue Engineering, Induced Pluripotent Stem Cells, Guided Tissue Regeneration, Periodontal, Animals, Humans, Stem Cell Niche, Periodontal Diseases
Adipose Tissue, Tissue Engineering, Induced Pluripotent Stem Cells, Guided Tissue Regeneration, Periodontal, Animals, Humans, Stem Cell Niche, Periodontal Diseases
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |