Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Vascular Pha...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY NC
Data sources: PubMed Central
Current Vascular Pharmacology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Mechanisms of Renal Blood Flow Autoregulation

Authors: Mallikarjuna R. Pabbidi; Richard J. Roman; Marilyn Burke; Jerry M. Farley;

Molecular Mechanisms of Renal Blood Flow Autoregulation

Abstract

Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback, the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.

Related Organizations
Keywords

Animals, Homeostasis, Humans, Blood Pressure, Vascular Resistance, Kidney, Article, Glomerular Filtration Rate, Renal Circulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    136
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
136
Top 1%
Top 10%
Top 10%
Green
gold