Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antibody-Drug Conjugate Targets

Authors: Teicher Ba;

Antibody-Drug Conjugate Targets

Abstract

The requirements for a cell surface molecule to be suitable as an antibody-drug conjugate target are stringent. The notion that antibodies-directed toward targets on the surface of malignant cells could be used for drug delivery is not new. The history of antibody-drug conjugates has been marked by hurdles identified and overcome. Early conjugates used mouse antibodies, drugs that were either not sufficiently potent, were immunogenic (proteins) or were too toxic and linkers that were not sufficiently stable in circulation. Three main avenues have been explored using antibodies to target cytotoxic species to malignant cells, antibody-protein toxin conjugates (or antibody fragment-protein toxin fusion proteins), antibody-small molecule drug conjugates and antibody-enzyme conjugates administered along with small molecule prodrugs requiring metabolism by the conjugated enzyme to release the activate species. This review focuses on cell surface proteins that have been targeted primarily by antibody-small molecule drug conjugates and briefly discusses 34 targets being investigated. While only one antibody-drug conjugate has reached regulatory approval, there are nearly 20 of these in clinical trial. The time may have come for this technology to become a major contributor to improving treatment for cancer patients.

Related Organizations
Keywords

Mice, Immunoconjugates, Immunotoxins, Neoplasms, Animals, Antibodies, Monoclonal, Humans, Antineoplastic Agents, Prodrugs

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    133
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
133
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?