Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Amyloid Beta: The Alternate Hypothesis

Authors: Hyoung-gon, Lee; Xiongwei, Zhu; Akihiko, Nunomura; George, Perry; Mark A, Smith;

Amyloid Beta: The Alternate Hypothesis

Abstract

Alzheimer disease (AD) is a devastating condition and patients, caregivers, clinicians, and scientists are eager to decipher the underlying disease mechanism and, thereafter, target this therapeutically. Most investigators studying the underlying cause of AD have focused on amyloid-beta (Abeta) such that the Amyloid Cascade Hypothesis is the predominant mechanism thought to be responsible for the disease. However, a number of caveats have led us to seriously question the validity of this hypothesis. First, in addition to increases in Abeta, genetic mutations in AD lead to increased vulnerability to oxidative/apoptotic insults indicating that the mutated protein disturbs redox balance. Whether mutations result in Abeta deposition that then causes oxidative stress or whether mutations cause oxidative stress that results in Abeta deposition is unclear. Indeed, while in vitro experiments show that Abeta can directly cause oxidative stress to cells in culture, it is apparent from other studies that the reverse is also true, namely that oxidative stress leads to increases in Abeta. Notably, in vivo studies in both sporadic and genetic forms of the disease show that oxidative stress temporally precedes increases in Abeta and that increases in Abeta are associated with a decrease in oxidative stress. Based on these findings, we herein propose an Alternate Amyloid Hypothesis in which pathogenic factors for disease lead to increased oxidative stress that then leads to increases in Abeta. Further, we propose that Abeta serves as a redox sensor and that oxidatively-induced Abeta serves to attenuate oxidative stress. Obviously, whether Abeta is the culprit, as argued by the Amyloid Cascade Hypothesis, or a much maligned protector, as argued by the Alternate Amyloid Hypothesis, is clearly important to decipher to advance our understanding and design efficacious therapeutics for this disease.

Related Organizations
Keywords

Mice, Oxidative Stress, Amyloid beta-Peptides, Alzheimer Disease, Neurofibrils, Animals, Humans, Mice, Transgenic, Down Syndrome

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    276
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
276
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!