Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ACE2 and Diabetic Complications

Authors: Rachael G, Dean; Louise M, Burrell;

ACE2 and Diabetic Complications

Abstract

Angiotensin converting enzyme (ACE) is a key enzyme in the renin angiotensin system (RAS) and converts angiotensin (Ang) I to the vasoconstrictor Ang II, which is thought to be responsible for most of the physiological and pathophysiological effects of the RAS. This classical view of the RAS was challenged with the discovery of the enzyme, ACE2 which both degrades Ang II and leads to formation of the vasodilatory and anti-proliferative peptide, Ang 1-7. Activation of the RAS is a major contributor to diabetic complications, and blockade of the vasoconstrictor and hypertrophic actions of Ang II, slows but does not prevent the progression of such complications. The identification of ACE2 in the heart and kidney adds further complexity to the RAS, provides the rationale to explore the role of this enzyme in pathophysiological states, including the microvascular and macrovascular complications of diabetes. It is believed that ACE2 acts in a counter-regulatory manner to ACE to modulate the balance between vasoconstrictors and vasodilators within the heart and kidney, and may thus play a significant role in the pathophysiology of cardiac and renal disease. Relatively little is known about ACE2 in diabetes, and this review will explore and discuss the data that is currently available. The discovery of ACE2 presents a novel opportunity to develop drugs that specifically influence ACE2 activity and/or expression, and it is possible that such compounds may have considerable clinical value in the prevention and treatment of the complications of diabetes.

Related Organizations
Keywords

Diabetes Complications, Heart Diseases, Angiotensin II, Animals, Humans, Kidney Diseases, Angiotensin-Converting Enzyme 2, Peptidyl-Dipeptidase A

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!