<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Oxygen (O(2)) is a vital element. Shortage of O(2) results in deranged metabolism and important changes in vascular tone with opposite effects on the systemic and pulmonary circulation. During hypoxemia, oxidative stress exposes the organism to a sort of accelerated senescence as well as to several acute untoward effects. Thus, hypoxemia should be promptly recognized and treated, hopefully by measures tailored to the pathophysiological mechanisms underlying hypoxemia. However, O(2) therapy remains the most common therapy of hypoxemia, but it must be carefully tailored to relieve hypoxemia without provoking hyperoxia or hypercarbia. Then, the individual response to O(2) as well as changing needs of O(2) during sleep or exercise must be evaluated to provide the best O(2) therapy. Hyperoxia, the effect of overcorrection of hypoxia, can dramatically impact the health status and threaten the survival of the newborn and, through different mechanisms and effects, the adult. A thorough knowledge of the pathophysiological bases of hypoxemia and O(2) storage and delivery devices is then mandatory to administer O(2) therapy guaranteeing for optimal correction of hypoxemia and minimizing the risk of hyperoxia. Consistent with this aim also is a careful scrutiny of instruments and procedures for monitoring the individual response to O(2) over time. Thus, at variance from classical pharmacological therapy, performing O(2) therapy requires a vast array of clinical and technical competences. The optimal integration of these competences is needed to optimize O(2) therapy on individual bases.
Aging, Oxygen Inhalation Therapy, Hyperoxia, Oxygen, Oxidative Stress, Oxygen Consumption, Animals, Humans, Oximetry, Hypoxia, Lung
Aging, Oxygen Inhalation Therapy, Hyperoxia, Oxygen, Oxidative Stress, Oxygen Consumption, Animals, Humans, Oximetry, Hypoxia, Lung
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |