Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Medicinal Ch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Medicinal Chemistry
Article . 2012 . Peer-reviewed
Data sources: Crossref
Current Medicinal Chemistry
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Update of Peptides with Antibacterial Activity

Authors: X. Vila-Farres; E. Giralt; J. Vila.;

Update of Peptides with Antibacterial Activity

Abstract

For many years a battle has been going on between bacteria and humans, with bacteria trying to survive against the antibiotics used by humans. Bacteria are found to be dominant in this battle since they can develop resistance. In fact, in the last decade multi-, extended- and pan-drug resistant bacteria have been isolated. On the other hand, the number of new antibiotics approved by the FDA has dramatically decreased during the last 20 years. Therefore, there is a desperate need for developing new types of antibacterial agents, where antimicrobial peptides may play an important role. This review provides an update of the recently identified antimicrobial peptides. Three valid approaches for developing a future antibacterial agent, as are the mechanisms of action as well as the in vitro and in vivo assays have been described in depth. In comparison to the antibacterial agents available at present, the targets for most of the antimicrobial peptides are not well known. However several proposals having been introduced for many antimicrobial peptides of different mechanisms of action, there still lies some uncertainty about their utility. Hundreds of antimicrobial peptides have been tested in vitro against all types of bacteria, but in this review we will highlight only those which have been tested against the most important Gram-positive and Gram-negative bacteria. The last step to get a potential antibiotic includes studies with an in vivo model. Therefore only antimicrobial peptides with good activity are tested that have been described in this review.

Related Organizations
Keywords

Gram-Negative Bacteria, Microbial Sensitivity Tests, Gram-Positive Bacteria, Anti-Bacterial Agents, Antimicrobial Cationic Peptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
bronze