Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Species-specific Antifolates

Authors: A. C. Anderson; D. C. M. Chan;

Towards Species-specific Antifolates

Abstract

Dihydrofolate reductase (DHFR) plays an essential role in cellular biochemistry and has been a well-recognized drug target for over fifty years. Antifolate inhibitors of DHFR, including clinically used therapeutics such as methotrexate, trimethoprim, and pyrimethamine have been successful as anticancer, antibacterial, antifungal and antiparasitic agents. As resistant strains of these microorganisms evolve and as new disease threats arise, the need for new antifolates that are potent and specific for infectious organisms becomes more pressing. Several new antifolates have been reported over the past decade; many of these are potent against a particular species of DHFR, but achieving the goal of potency and selectivity has proven to be more difficult. This review will describe recent advances in attaining species selectivity in developing new antifolates. Specifically, advances in developing inhibitors against Pneumocystis jirovecii and Plasmodium falciparum, the causative agents in pneumocystis pneumonia and malaria, respectively, will be presented.

Related Organizations
Keywords

Pteridines, Molecular Sequence Data, Plasmodium falciparum, Pneumocystis carinii, Trimethoprim, Antimalarials, Tetrahydrofolate Dehydrogenase, Pyrimethamine, Pyrimidines, Species Specificity, Drug Design, Trimetrexate, Animals, Folic Acid Antagonists, Humans, Amino Acid Sequence, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?