
doi: 10.2172/838992
This report covers the final one-year period of work done by the Principal Investigator (S. T. Pantelides) and his group in collaboration with other team members. The focus of the work was to pursue understanding of core excitation spectra in doped manganites where experimental data obtained at Oak Ridge National Laboratory by S. J. Pennycook showed inequivalent Mn atoms. Calculations found that doping sets up a Peierls-like instability that drives the observed distortion. Further calculations of electron-energy-loss spectra to account for the observed L23 ratios in the Mn L2,3 spectra will be pursued in the future.
Atoms, 36 Materials Science, Spectra Cmsn, Response Functions, Instability, Excited States, Cmsn, Ornl, Excitation
Atoms, 36 Materials Science, Spectra Cmsn, Response Functions, Instability, Excited States, Cmsn, Ornl, Excitation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
