Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Reservoir characterization and process monitoring with EM methods. 1994 Annual report

Authors: Wilt, M.;

Reservoir characterization and process monitoring with EM methods. 1994 Annual report

Abstract

During the past five years at Lawrence Livermore National Laboratory (LLNL) the authors have applied the EM induction method to the problem of petroleum reservoir characterization and enhanced oil recovery (EOR) monitoring. The goal is to develop practical tools for determining the electrical resistivity distribution between boreholes at a useful scale for reservoir characterization. During FY94 the authors conducted their largest field test to date. They applied crosshole and surface-to-borehole EM techniques to reservoir characterization at the Los Hills No. 3 oil field making three sets of measurements during the initial phase of the steam drive.From these data they were able to determine the resistivity and configuration of the oil sands, between the observation wells, and provide an image of the subsurface resistivity changes due to the steam drive. They also conducted a waterflood experiment at the Richmond Field Station facility using the borehole-to-surface EM technique. For this test they injected a small quantity of saltwater, and applied the Em technique to monitor the progress of the injected plume. Data collection for this experiment is complete but the results are yet to be interpreted. Finally, a project to understand EM propagation through steel casing was initiated in 1994. The goalsmore » of the experiment are to determine the limits and applications for crosswell EM surveys through steel well casing.« less

Country
United States
Related Organizations
Keywords

Steam Injection, Monitoring, Progress Report, 550, Viscosity, Waterflooding, 02 Petroleum, Reservoir Rock, Electric Conductivity, Induction Logging, Resistivity Logging, Oil Wells, California, Petroleum, Electromagnetic Surveys, Oil Fields, Temperature Logging, Experimental Data, Thermal Recovery

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities