Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diffraction efficiency analysis for multi-level diffractive optical elements

Authors: Erteza, I.A.;

Diffraction efficiency analysis for multi-level diffractive optical elements

Abstract

Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.

Related Organizations
Keywords

Mathematical Models, 66 Physics, D Codes, Diffraction Gratings, Optics, Gauss Function, Diffraction, 530, Computer Program Documentation, Optical Systems, Lenses, 543

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average