Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://digital.libr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

Planetary Interior in the Laboratory

Authors: Chau, R; Bastea, M; Mitchell, A C; Minich, R W; Nellis, W J;

Planetary Interior in the Laboratory

Abstract

In the three years of this project, we have provided a complete database of the electrical conductivity of planetary materials to 180 GPa. The electrical conductivities of these planetary materials now provide a basis for future modeling of planets taking into account full magnetohydrodynamics. By using a full magnetohydrodynamics simulation, the magnetic fields of the planets can then be taken into account. Moreover, the electrical conductivities of the planetary materials have given us insight into the structure and nature of these dense fluids. We showed that simple monoatomic fluids such as hydrogen, nitrogen, and oxygen at planetary interior conditions undergo a common metallization process which can be explained on a simple basis of their radial charge density distributions. This model also shows that the metallization process is actually rather common and likely to take place in a number of materials such as carbon monoxide which is also present within planetary objects. On the other hand, we have also showed that a simple two component fluid like water and methane take on much different behaviors than say nitrogen due to the chemical interactions within these systems. The dynamics of an even more complex system, ''synthetic Uranus'' are still being analyzed butmore » suggest that on some levels the behavior is very simple, i.e. the electrical conductivity is essentially the same as water, but the local dynamics are very complex. This project has shed much light on the nature of electrical transport within planetary interiors but also has shown that understanding chemical processes in the complex fluids within planetary interiors to be very important. Understanding those local interactions and processes is required to gain further insight into planetary interiors.« less

Country
United States
Related Organizations
Keywords

Carbon Monoxide, General Physics, Nitrogen, Electric Conductivity, Planets, Transport, Water, Oxygen, Magnetohydrodynamics, Magnetic Fields, 08 Hydrogen, Charge Density, 71 Classical And Quantum Mechanics, 03 Natural Gas, Methane, Simulation, Hydrogen

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities