Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Meteo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the Meteorological Society of Japan
Article . 2008 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predictability Aspects of Global Aqua-planet Simulations with Explicit Convection

Authors: Brian MAPES; Stefan TULICH; Tomoe NASUNO; Masaki SATOH;

Predictability Aspects of Global Aqua-planet Simulations with Explicit Convection

Abstract

High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively-coupled waves so that explicit convection is an especially topical novelty.Squared differences between pairs of runs grow from initially tiny values to saturation at twice the climatological variance. For wavelengths shorter than 103 km, differences saturate within about a day. For tropical long waves, the time to saturation indicates predictability for at least 2 weeks. This time scale is similar in middle latitude flow, which interacts with tropical waves in the 3D model, but it is also similar in 2D pseudo-equatorial vertical plane simulations of pure convectively coupled gravity waves. As a result, no simple conclusions can be drawn about whether tropical predictability is limited more by tropical chaos or by tropical-extratropical interactions.Difference growth appears to fill out the saturation energy spectrum in a “vertical” (up-magnitude) rather than “horizontal” (up-scale) manner. Up-scale growth thus occurs as a continuing amplification of large scales after small scales saturate, which begs the question of what sets the shape of the saturation (climatological) power spectra. Wind spectra are nearly power-law with a logarithmic slope of about -5/3 in the free troposphere, remarkably so in the 2D runs and clearly distinct from slope -2 (a null hypothesis of spectrally white wind divergence). A common interpretation of -5/3 slope - as indicative of a cascade, a steady conservative transfer of energy from source to sink scales by interactions that are local in log-wavelength space - is hard to apply to these moist tropical waves.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Average
gold