Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vascular Health and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vascular Health and Risk Management
Article . 2005 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vascular Health and Risk Management
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathophysiology of tumor neovascularization

Authors: Mitsuko Furuya; Yoshitoshi Kasuya; Sadao Kimura; Hiroshi Ishikura; Mariko Nishiyama;

Pathophysiology of tumor neovascularization

Abstract

Neovascularization is essential to the process of development and differentiation of tissues in the vertebrate embryo, and is also involved in a wide variety of physiological and pathological conditions in adults, including wound repair, metabolic diseases, inflammation, cardiovascular disorders, and tumor progression. Thanks to cumulative studies on vasculature, new therapeutic approaches have been opened for us to some life-threatening diseases by controlling angiogenesis in the affected organs. In cancer therapy, for example, modulation of factors responsible for tumor angiogenesis may be beneficial in inhibiting of tumor progression. Several antiangiogenic approaches are currently under preclinical trial. However, the mechanisms of neovascularization in tumors are complicated and each tumor shows unique features in its vasculature, depending on tissue specificity, angiogenic micromilieu, grades and stages, host immunity, and so on. For better understanding and effective therapeutic approaches, it is important to clarify both the general mechanism of angiogenic events and the disease-specific mechanism of neovascularization. This review discusses the general features of angiogenesis under physiological and pathological conditions, mainly in tumor progression. In addition, recent topics such as contribution of the endothelial progenitor cells, tumor vasculogenic mimicry, markers for tumor-derived endothelial cells and pericytes, and angiogenic/angiostatic chemokines are summarized.

Related Organizations
Keywords

Vascular Endothelial Growth Factor A, Neovascularization, Pathologic, Stem Cells, Angiogenesis Inhibitors, Cell Differentiation, Muscle, Smooth, Vascular, Extracellular Matrix, Receptors, G-Protein-Coupled, Fibroblast Growth Factors, RC666-701, Neoplasms, Diseases of the circulatory (Cardiovascular) system, Animals, Humans, Cell Lineage, Endothelium, Vascular, Angiogenic Proteins, Chemokines, Pericytes, RGS Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Average
gold
Related to Research communities
Cancer Research